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RNA-Sequencing: Alignment using Rail-RNA
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NATIONAL CANCER INSTITUTE
THE CANCER GENOME ATLAS

A BY THE NUMBERS

TCGA produced over

2.5

PETABYTES

of data

To put this into perspective, 1 petabyte of data
is equal to

212 OOO

DVDs

TCGA RESULTS & FINDINGS

Improved our

TCGA data describes ..including

$A33 10

DIFFERENT RARE
TUMORTYPES  CANCERS

..based on paired tumor and normal tissue sets
collected from

M 11,000

PATIENTS
..using
7 DIFFERENT
DATATYPES

For example, a TCGA study found the basal-like
subtype of breast cancer to be similar to the

MOLECULAR understanding of the serous subtype of ovarian cancer ona molecular
BASIS OF genomic underpinnings le_vel, suggestlng that despite arising from
ifferent tissues in the body, these subtypes may
CANCER of cancer different t the body, th bt
share a common path of development and
respond to similar therapeutic strategies.
TUMOR Revolutionized how TCGA revolutionized how cancer is classified by
SUBTYPES cancer is classified identifying tumor subtypes with distinct sets of

genomic alterations.*

Identified genomic
characteristics of tumors
THERAPEUTIC | that can be targeted with

TARGETS currently available
therapies or used to help
with drug development

THE TEAM

- COLLABORATING

TCGA's identification of targetable genomic
alterations in lung squamous cell carcinoma led
to NCI's Lung-MAP Trial, which will treat
patients based on the specific genomic changes
in their tumor.

WHAT'S NEXT?

The Genomic Data

Commons (GDC)

houses TCGA and other

NCI-generated data

sets for scientists to o
access from anywhere.

The GDC also has

many expanded

INSTITUTIONS capabilities that will @ o
- across the United States allow researchers_to
answer more clinically
and Canada :
relevant questions with
increased ease.
blysis of stomach cancer revealed that it is not a single disease, but a disease composed
of four subtypes, including a new subtype characterized by infection with Epstein-Barr virus. WWW.cancer.govlccg




& NCBI  Resources @ How To Sign in to NCBI

Advanced Help

Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility and

allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from high-
throughput sequencing platforms, including Roche 454 GS System®, lllumina Genome Analyzer®, Applied Biosystems SOLID
System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Getting Started Tools and Software Related Resources
Understanding and Using SRA Download SRA Toolkit dbGaP Home
How to Submit SRA Toolkit Documentation Trace Archive Home
Login to Submit SRA-BLAST BioSample
Download Guide SRA Run Browser GenBank Home

SRA Run Selector

You are here: NCBI > DNA & RNA > Sequence Read Archive (SRA) Write to the Help Desk



Project No. of Sample

Genotype-Tissue Expression Project !
TCGA 11,284
The Cancer Genome Atlas
SRA 49,848

Sequence Read Archive




(= C' O https://jhubiostatistics.shinyapps.io/recount/ Mg

recount2: analysis-ready RNA-seq gene and exon counts datasets

Datasets Popular datasets GTEx TCGA Documentation Download data with R Accessing recount?2 via SciServer Contribute your data

A multi-experiment resource of analysis-ready RNA-seq gene and exon count datasets

H r e C o U n t recount2 is an online resource consisting of RNA-seq gene and exon counts as well as coverage bigWig files for 2041 different studies. It is the second generation of the
ReCount project. The raw sequencing data were processed with Rail-RNA as described at bioRxiv 038224 which created the coverage bigWig files. For ease of statistical analysis, for each study we created count tables at the
gene and exon levels and extracted phenotype data, which we provide in their raw formats as well as in RangedSummarizedExperiment R objects (described in the SummarizedExperiment Bioconductor package). We also
computed the mean coverage per study and provide it in a bigWig file, which can be used with the derfinder Bioconductor package to perform annotation-agnostic differential expression analysis at the expressed regions-level
as described at bioRxiv 015370. The count tables, RangedSummarizeExperiment objects, phenotype tables, sample bigWigs, mean bigWigs, and file information tables are ready to use and freely available here. We also
created the recount Bioconductor package which allows you to search and download the data for a specific study . By taking care of several preprocessing steps and combining many datasets into one easily-accessible
website, we make finding and analyzing RNA-seq data considerably more straightforward.

Related publications

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. recount: A large-scale resource of analysis-ready RNA-seq expression data. bioRxiv 068478.

The Datasets

Show 10 4 entries Search:
number
of files
accession samples |7 species abstract gene exon junctions phenotype info
All All All All All All
SRP025982 1720 human We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United RSE RSE RSE jx_bed link link
States Food and Drug Administration. Examining lllumina HiSeq, Life Technologies SOLID and Roche 454 counts counts jx_cov
platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA counts

sequencing (RNA-seq) performance for sequence discovery and differential expression profiling and
compare it to microarray and quantitative PCR (QPCR) data using complementary metrics. At all sequencing
depths, we discover unannotated exon-exon junctions, with >80% validated by gPCR. We find that
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SRA phenotype information is far from complete
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Even when information is provided, it's not always clear...

sra_metaSSex

Category Frequency

F 95
female 2036
Female 51

M 77

male 1240
Male 141

Total 3640
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Even when information is provided, it's not always clear...

sra_metaSSex

Category Frequency

F 95

female 2036
Female 51
M 77

male 1240
Male 141

Total 3640

“1 Male, 2 Female”, “2 Male, 1 Female”, “3

Female”, “DK”, “male and female” “Male (note:
..)", “missing”, “mixed”, “mixture”, “N/A”, “Not

avallable" “not applicable”, “not collected”,

“not determined”, “pooled male and female”,
“U”, “unknown”, “Unknown”

n u

# w/sex
# of NAs assigned
44,957 4,700




Missingness limited in GTEx data
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White

Age
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27
23
51
27
68
61
42
40
33
60
54
31
93
96
44
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select_regions()

Input Data

Expression LN
Region chrX chrY
Informatir
Covariate
Information < _| o
n p e = 4 —— males
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Output:

Coverage matrix (data.frame)
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Expression
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Information
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E extract_dat
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ImFit(expression ~ phenotype)

extract
coefficient
i estimates

male  female
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2
S||961| 3.9
()] |
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Output:

Model Estimates




test_predictor() output

Actual Phenotype

Input Data

Predicted Phenotype

Genomic build_predictor() Resubstitution Error
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Region
Information
Covariate
Information
n
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coefficient
estimates:
male | female predictions
90.1 | 9.9 d male
' ) 2 2
2™ 5[] 961 39 s
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Output:
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Output:
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test_predictor() output
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Input Data

Genomic build_predictor() Predicted Phenotype

ZHIEEL Region Resubstitution Error
Information
Covariate
Information
n
regions x individuals
coefficient proportion
estimates: predicted
male | female predictions actual correctly:
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Q
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— \ (197.2] 2.8 S| female female
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v 986 | 1.4 v

Output:
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Input Data

Genomic build_predictor() Predicted Phenotype

ZHIEEL Region Resubstitution Error
Information
Covariate
Information
n
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e ) 90.11 959 male male sum(predicted==actual)
. 17, n
Q
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extract_data()

Input Data

Genomic

Expression e select_regions()
Information
Covariate
Information . - P -
. H |
E A |
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Extract
Pred expression test set
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. w m
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» 2%
3 (¢D)
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Output:

Coverage matrix (data.frame)
Region information (GRanges)
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Output:
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Region information (GRanges)
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predict_pheno()

Input Data
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D] e extract_data()
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Information
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predict_pheno()
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> male
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build_predicto
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samples

make male

predictions

ctions
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<
<
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+  coefficient
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Sex Prediction

| 99.6%
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Sex Prediction

1.0

Sex .o
predictionis & =-
accurate § -
across data s -
sets S -

GTEx: training GTEx: test TCGA SRA

Number of Regions 20 20 20 20

Number of Samples (N)| 4,769 4,769 11,245 3,640




Can we use
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1.0

Tissue Prediction

Tissue .
predictionis & 3
accurate -
across data :
sets 2

GTEX: training GTEX: test TCGA SRA

Number of Regions| 589 589 589 589

Number of Samples (N)| 4,769 4,769 7,193 8,951




Predictionis =-

more %
accuratein ¢ °
healthy = -
tissue N

Tissue Prediction

GTEXx: training GTEXx: test TCGA: healthy tissue TCGA: cancer SRA
Number of Regions 589 589 589 589 589
Number of Samples (N) | 4,769 4,769 613 6,579 8,951




Horvath demonstrates that 353 CpGs can accurately predict age
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How well can we predict age in GTEx?
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Tissue poses
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Even within tissue, signal is pretty weak...
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What about predicting a
technical aspect of
sequencing?



Can we predict which
sequencing approach
was employed from
expression data?

Single-end reads

reference
sequence

Paired-end reads

e reference
sequence

sequenced  unknown  sequenced
fragment sequence fragment
g S
| |
200 - 1000bp




Sequencing
approach
prediction is
accurate
across data
sets
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oredictions (v0.0.01)

sample_id study pred_sex accuracy_sex  pred_tissue accuracy_tissue pred_PE_SE accuracy_PE_SE
SRR660824 gtex male 0.999 Lung 0.961 PAIRED 0.999
SRR2166176 gtex male 0.998 Brain 0.951 PAIRED 0.999
SRR606939 gtex female 0.999 Heart 0.961 PAIRED 0.999
SRR2167642 gtex male 0.999 Brain 0.961 PAIRED 0.999

SRR2165473 gtex male 0.999 Skin 0.961 PAIRED 0.999



If you want to...

Align RNA-Seq data

v Rail-
Scalable RNA-seq alignment

Learn about human

Illrecountz

expression
Pre_dict pheljotype phenopredict
information https://github.com/ShanEllis/phenopredict
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